HEURISTICS

Code Analysis

Software is an intangible entity produced by the intellectual effort of software engineering team. It is therefore important that those involved have effective mechanisms for measuring project status in a reliable and timely manner and that corrective action be taken before deviations become disasters. Project factors that must be measured and controlled include schedule milestones, cost of resources, product features, quality attributes, risk factors and process effectiveness.

Software metrics can help address the most critical issues in software development and provide support for planning, predicting, monitoring, controlling and evaluating the quality of both software products and processes. Almost all of the existing software metrics attempt to capture characteristics of software code.

Early availability of metrics (before going into testing phase) is a key factor to a successful management of software development, since it allows for:

· Early detection of problems

· Better software quality monitoring

· More accurate planning of resource allocation based upon the product error proneness of the system and its components

Code analysis tool also finds application in the maintenance and evolution of existing software systems. In a typical software maintenance effort, a variety of activities are carried out that benefit from information and knowledge that is syntactically extractable from code. For example, code analysis tool can help to acquire a complete understanding of the structure, behavior, and functionality of the system being modified, or can assist in assessing the impact of a change. Code analyzers are also useful in testing and post maintenance testing to generate cross-reference information, perform data flow/control flow analysis and derive definition-use chains.

HEURISTICS provides solutions that address the spectrum of software development and quality assurance issues. It will automate the following activities:

· Static Analysis

· Dynamic Analysis

HEURISTICS is an invaluable tool in the software engineer’s arsenal that brings out the complexity, inherent quality, potential faults and redundant code in a software package. It gives valuable insight, for the software engineer to fine-tune the design/code to meet the required specifications in a better way. It is windows based package for C/C++ source code.

Features

· Static analysis of source code by automatic code inspection.

· Ease of use and high-level performance

· Quick and easy GUI

· Requires no programming knowledge.

Benefits

· Provides objective means of measuring Quality of software.

· Checks code for testability.

· Checks code for maintainability.

· Offers full reporting capabilities to make test analysis clear and concise.

· Adds proven structure to your testing process and makes testing rewarding.

· Helps you monitor test results over the life of your application.

Static Analyzer: -

Block Diagram

[image: image1.png]Component Name main

sIMPLICITY TESTABILITY

No_0f_Statement,

Cyclomatic_Number o_0f_Tnput_output_I

yelomatic_Number

rogram Length

Comment_Frequency

Average_size

SELF_DESCRIPTION READABILITY

[image: image2.png]9 T0_DOCUMENT(33%
1 TOINSPECT(33%)
W TO_TEST(E3%)

[image: image3.png]Quality Graph

[image: image4.png]DIAGRAM

EVENT TRACE

[image: image5.png]Quality Graph

[image: image6.png]9 T0_DOCUMENT(33%
1 TOINSPECT(33%)
W TO_TEST(E3%)

Static Analyzer

Static Analyzer provides

 Qualitative assessment of the code through call graph and control graph.

 Quantitative assessment of the code through complexity measurements.

Quality Attributes

Specific quality attributes are selected based on their importance to the project and their ability to be quantified.

The quality attributes are used to derive a core set of metrics relating to the development process and the products such as requirements and design documents, code and test plans.

There is a need for a comprehensive model for the evaluation of quality and the management of risk.

Quality Standard

Our quality model incorporates the factors specified in ISO 9126, each having a number of attributes, which the respective metrics constitute.

Following the structure of ISO 9126, the factors are related to software product and process attributes that allow indications of the probability of success in meeting the goals/factors. A set of metrics is chosen or developed that measure the selected attributes.

Quality Model

Quality Model is defined for Static Analysis only for C. It evaluates Software quality.

Quality is

Specified in terms of factors.

Designed in terms of criteria.

Built with the help of programming rules.

Assessed by means of metrics.

 Software Metrics

A software metric is a measure of some aspect of a program, design, or algorithm. It can be systematically calculated. It can be used to make inferences about that program, design, or algorithm. We can infer the complexity of other programs from the calculated values of one Program.

Software Complexity
Static Analysis of the code is performed through automatic code inspection. For C,

Complexity of the source code is given through

Architectural Complexity

Structural Complexity

Textual Complexity

Architectural Complexity

 Architectural Complexity gives the complexity related to the call graph of the software. Metrics associated with this are

Accessibility of component: is the measure of the ease with which a component may be

Accessed.

Testability of a path: is the indication of the ease with which a path may be tested.

No. Of call paths: paths going from root to the final component.

No. Of levels: maximum length of calls paths.

No. Of edges: total number of calls paths.

Hierarchical Complexity: mean number of components per level.

Structural Complexity

 Structural Complexity gives the complexity related to control structure of a given code. Metrics associated with this are

Cyclomatic Complexity: is the maximum number of linearly independent circuits in a strongly connected graph. It is also a measure of the number of basic paths in a

Component.

Degree of nesting: is the total number of nesting of the control structure.

No. Of in-out points: is the number of entry and exit points in a given code.

Textual Complexity

 Textual Complexity gives the complexity related to the text of the code. Metrics associated with this are

Program length: is the total usage of all operands and operators in the program.

Program volume: is the number of bits needed to code the program.

Programming effort: is the number of ‘elementary mental discriminations’ required to code the program.
Coding time: is the time to code a preconceived algorithm in the language used.

Results

The results of Static Analysis are given in

Graphical and

Textual representation
Graphical representation

 In graphical representation Static Analyzer provides the following

Call Graph

Gives an architectural view of the program.

The Call graph shows the way the components are called within a program.

Points out recursive calls and critical resources, such as frequently called functions.

Control Graph

Displays the logical structure of a component.

The Control graph shows the flow of control to different sections of the code. The pseudo code also appears along with it.

Consists of nodes,

 Representing statements, and

 Edges representing the transfer of the control flow between nodes.

 Finds code duplication, unstructured switches, dead code, etc through the uniquely represented nodes.

Kiviat Graph

Exhibits the behavior of a component for the metrics defined in the model.

Points out components that are outside the metric limits.

In Kiviat Graph

Each axis represents a metric the limits are indicated by two circles: the inner circle

Corresponds to the minimum value accepted, and the outer circle corresponds to the maximum value accepted. The polygon links all the values obtained for the

Object analyzed.

Criteria Graph

Ranks an object with respect to set of quality criteria defined in the model.

It presents

Criterion/metric associations.

The metrics position with respect to the limit values.

The category of the object is given for each criterion.

Control Structure metrics

Textual metrics

Quality report

Criteria Distribution report

Graphical Representations

· Quality is a composite of many characteristics; the notion of quality is usually captured in a model that depicts the composite characteristics and their relationships. Heuristics quality model is similar to Boehm’s quality model and McCall’s Model.

Criteria Graph

Ranks an object with respect to set of quality criteria defined in the model.

It presents

Criterion/metric associations.

The metrics position with respect to the limit values.

The category of the object is given for each criterion.

[image: image7.png]DIAGRAM

EVENT TRACE

Event Trace Diagram

 The Dynamic Analyzer puts the runtime performance or evaluation of the software package to its stringent test. It facilitates the software engineer to identify the memory leakage in the program. It also gives stack and heap variation charts along with event trace diagrams, which shows the flow of the program.

Stack Variation Chart

It shows the utilization of static memory allocation.
Heap Variation Chart

It shows the utilization of dynamic memory allocation.
Heuristics evaluates the following metrics:

· Accessibility of a component

· Testability of path

· Hierarchical complexity

· Structural Complexity

· Cyclomatic number

· Maximum number of levels

· Number of entry and exit nodes

· Number of statements

· Comment frequency

· Average size of statements

· Program length

· Program volume

· Program level

· Mental effort

· Estimated number of errors

Code Coverage

Code coverage tools measure how thoroughly tests exercise programs. Testers who read the source code while testing. It also describes coverage's relevance to the independent product tester (someone who doesn't look at the code) and to managers of developers and testers. For C Analyzer, we have implemented the following types of coverages.

Code coverage analysis is the process of:

· Finding areas of a program not exercised by a set of test cases,

· Creating additional test cases to increase coverage, and

· Determining a quantitative measure of code coverage, which is an indirect measure of quality.

An optional aspect of code coverage analysis is:

· Identifying redundant test cases that do not increase coverage.

Statement Coverage

A simple one is to record which lines of code were executed. If a line has never been executed, it's a safe bet you didn't catch any bugs lurking in it. This type of coverage is usually called “statement coverage”.

This measure reports whether each executable statement is encountered. Statement coverage does not report whether loops reach their termination condition - only whether the loop body was executed. With C, C++, and Java, this limitation affects loops that contain break statements.

Since do-while loops always execute at least once, statement coverage considers them the same rank as non-branching statements.

Statement coverage is completely insensitive to the logical operators (|| and &&).

Statement coverage cannot distinguish consecutive switch labels.

Function Coverage

This measure reports whether you invoked each function or procedure. It is useful during preliminary testing to assure at least some coverage in all areas of the software. Broad, shallow testing finds gross deficiencies in a test suite quickly.

Here we have to find out that how many functions are covered for a sample project. Once we find out this, we can calculate the percentage of statements covered.

Call Coverage

This measure reports whether you executed each function call. The hypothesis is that faults commonly occur in interfaces between modules.

Also known as call pair coverage.

Decision Coverage

This measure reports whether Boolean expressions tested in control structures (such as the if-statement and while-statement) evaluated to both true and false. The entire Boolean expression is considered one true-or-false predicate regardless of whether it contains logical-and or logical-or operators. Additionally, this measure includes coverage of switch-statement cases, exception handlers, and interrupts handlers.

This measure has the advantage of simplicity without the problems of statement coverage.

A disadvantage is that this measure ignores branches within Boolean expressions which occur due to short-circuit operators. For example, consider the following C/C++/Java code fragment:

If (condition1 && (condition2 || function1 ()))

 Statement1;

Else

 Statement2;

Metrics Measurement

Tokenization of Source Code

Source Code

Quality Modeling

Quality Evaluation

� EMBED PBrush ���

� EMBED PBrush ���

� EMBED PBrush ���

_1098179473

_1098180356

_1098179397

