[image: image1.png]

Code Analyzer

Software User Manual

User Manual

for

“CODE ANALYZER”

Document No. NS/CA/SUM/01

10th Feb 2004

Version 1.0

[image: image93.png]Code Analyzer for C - [Accessablity Table] [_[CIx]

) Fle View Graph Repot Window Hep

=l81x]

DeHl B8 =0

| krose ew

Kl

Accessablity Table

Serial Wumber | Component | Accessibility

1 main 1
2 ada 0
B sub 0
a a1 0
s aiv 0
B errox 0

25

25

25

25

25

|

For Help press F1

NEWTECH SOFTWARE

 CREATE RELATE COMMUNICATE

#572, 6th F Cross, 17th A Main,

6th Block, Koramangala, Bangalore-560095.

 Telephone: 5529291, 5529336/8 Telefax: 5529336

	CONTENTS

	S.No
	Description
	Page No.

	1.
	Scope
	1

	1.1.
	Identification.
	1

	1.2.
	System overview.
	1

	1.3.
	Document overview.
	1

	2.
	Referenced Documents
	1

	3.
	Software Summary
	1

	3.1.
	Software application
	1

	3.2.
	Software inventory
	2

	3.3.
	Software environment
	2

	3.3.1.
	Development environment
	2

	3.3.2.
	User environment
	2

	3.4.
	Software organization and overview of operation
	2

	3.4.1.
	C Code Analyzer
	2

	3.4.2.
	C++ Code Analyzer
	2

	3.5.
	Contingencies and alternate states and modes of operation
	2

	3.6.
	Software security and privacy
	2

	3.7.
	Assistance and problem reporting
	3

	4.
	Access to Software
	3

	4.1.
	First time user of the software
	3

	4.1.1.
	Equipment familiarization
	3

	4.1.2.
	Access control
	3

	4.1.3.
	Installation and setup
	3

	4.2.
	Initiating the software
	3

	4.3.
	Suspending the application
	3

	5.
	Reference guide for procedure
	4

	5.1.
	Capabilities
	4

	5.2.
	Conventions
	4

	5.3.
	Processing procedure
	4

	5.3.1.
	Code Analyzer for C
	4

	5.3.1.1.
	C Static Analyzer
	6

	5.3.1.2.
	C Dynamic Analyzer
	37

	5.3.2.
	Code Analyzer for C++
	51

	5.3.2.1.
	C++ Static Analyzer
	53

	5.3.2.2.
	C++ Dynamic Analyzer
	67

	5.3.2.3.
	Code Coverage
	75

	5.3.2.3.1
	Code Coverage For C
	76

	5.3.2.3.2
	Code Coverage For C++
	82

	6.
	Notes
	85

	1. Scope

 This section has following four sections:

1.1 Identification

 Identification number : CA01

 Title : Code Analyzer

 Version number

 : 1.0

 Revision number : 2.0

1.2 System overview

The software ‘HEURISTICS’ is a PC based tool which analyzes the source code in C and C++ to give valuable metrics used by the project management team.
1.3 Document overview

 This document provides broad guidelines and the relevant details

 for the proper use of Code Analyzer.

	2. Referenced Documents

 1.NS/CA/SRS/01, 8th August 2001

 2.NS/CA/SDD/01, 8th August 2001

 3.NS/Norman E Fenton/Software Metrics, 1997

 4.NS/Berard/An Object-oriented Product Development, 1992
 5.MIL-STD-498,1998

	3. Software summary

3.1 Software application

 Code Analyzer provides solutions that address the spectrum of software

 development and quality assurance issues. It will automate the following activities

· Static Analysis

· Dynamic Analysis

3.2 Software inventory

Not applicable

 3.3 Software environment

 3.3.1 Development environment

 a) Hardware requirements

 Pentium II (350 MHz) PC with minimum 64 MB RAM

 b) Software requirements

 MS Access, Visual Studio

 c) Operating environment

 Windows 95/98/2000/NT.

 3.3.2 User environment

 Windows 95/98/2000/NT. MS Access should be installed in the

 user’s system.

 3.4 Software organization and overview of operation

The software is organized broadly into two sections which further has been

split into two modules.

 3.4.1 C Code Analyzer

a) C Static Analyzer

b) C Dynamic Analyzer

 3.4.2 C++ Code Analyzer

a) C++ Static Analyzer

b) C++ Dynamic Analyzer

3.5 Contingencies and alternate states and modes of operation
 Not applicable

3.6 Security and privacy
 Not Applicable

3.7 Assistance and problem reporting
For any problem encountered while using the software, please contact

Newtech Software, #572, 6th F Cross, 17th A Main, 6th Block, Koramangala,

Bangalore-560095.

	4. Access to software

 4.1. First time user of the software

 4.1.1. Equipment familiarization

 This software is dialog based as well as menu driven. The user can easily select the required option from the dialog/menu by either using the mouse or the ARROW keys from the keyboard. In the menu, to transfer control to the selected editable or control field ENTER key can be used or the option can be clicked at. To move from the current page to the previous page EXIT has to be clicked from the FILE menu.

 4.1.2. Access control

 Not applicable.

 4.1.3. Installation and setup

 To install the software, follow the instructions given in readme.txt

 file.

4.2. Initiating the software

 From the Programs list select HEURISTICS (name of the software). Thereafter C or C++ Analyzer can be chosen from the list for the respective option to be executed.

4.3. Suspending the application

 From the main window EXIT option has to be clicked to finally

Close the application.

	5. Reference guide for procedure

5.1. Capabilities

 This software is capable of analyzing any code written in C or C++. Testing large and complex software is inherently a difficult process, which should be as systematic as possible in order to provide adequate reliability and quality assurance. Code Analyzer guides programmers in creating C programs that are understandable, maintainable and error free. It looks out for such problems as poor coding and mistakes that the native compiler considers trivial or overlooks entirely. It provides solutions that address the spectrum of software development and quality assurance issues, organizations are facing today.

 Automation of testing activities include:

--- Static Analysis

--- Dynamic Analysis

5.2. Conventions

Not Applicable

5.3. Processing procedure

5.3.1. Code Analyzer for C

After choosing the option as C Analyzer from the HEURISTICS menu

the windows appear side by side as

[image: image2.png]Heuristics{Code Analyzer for C/C++)

B Code Analyzer for C

@l rosetw

The menu bar has the following menu items whose purpose has

been explained below:

 A). File Menu: provides the following options

 a). New - Opens a text editor where the user can key in the code. The

 menu items provided here are:

 i. File – Further provides options for New, Open, Save, Close

 Print and Exit for the respective windows.

 ii. Edit – Allows the code to be edited upon with options for

 Undo, Cut, Copy and Paste.

 iii. View – Has options for the Toolbar and Status bar to be

 displayed.

 iv. Window –Allows the windows that are opened to be

 Cascaded or Tiled. It also allows a new window to be

 opened.

 v. Help – Provides a brief detail about all the menus in the

 software.

 b). Open – Opens an existing file. The respective directory has to be

 chosen for the file to be opened.

 c). Print Setup - Selects a printer and printer connection to print the

 document.

 d). Exit - Exits the Application.

 B). View Menu : Has options for the Toolbar and Status bar to be displayed.

C). Analyzer Menu: The user can select between Static Analyzer and

 Dynamic Analyzer from this menu item.

 D). Help Menu : Gives a brief about all the menus in the software

 The user can choose between Static Analyzer and Dynamic Analyzer from

 The dialog box too.

5.3.1.1. C Static Analyzer:

· Static analysis is a verification process based on source code examination. The static analyzer provides qualitative and quantitative assessment of the code before execution as explained below.

· On clicking Static Analyzer the windows appear as shown below

[image: image3.png]Step

‘ode Analyzer for C - [Stal

Analyzer] [=[ofx]

) Fle View Graph Fepot Anabzer Window Help SET|

Select the fle o Analyze

—
Selectfie | CieateNewFie| Clear

[Step2

Cick Analze Button o

Anslee Fie Anslze

[Sten3
Qualty Model_Define New Huaity Model

Select Qualty Model

- Reports
Graphs
Textual Reports
Graphical Feports
Resuls

Generale Himl Repotts

Display Hirl Reports

Save Himl Reports

Close AllRepots Dore.

IR

& [Freoselts

File Name

For Help, press F1

[[NV [/]

 The user can perform the following by clicking at the respective buttons.

 The explanation and the related procedure is as given in the menu details

 which follow.

A. Select File – to select a file for analysis.

B. Create New File – to key in a new code for analysis.

C. Analyze – to analyze the selected file.

D. Define Quality Model - to create a new quality model.

E. Select Quality Model – to select an already defined quality model.

F. Click for graphs – to show a list of graphs giving the analyzed results.

G. Click for textual reports - to give the results in textual format.

H. Click for graphical reports – to show the results in graphical display.

I. Generate html Reports- to generate html reports

J. Display html reports – to display the current results in html format

K. Save html reports – to save html reports for future use

 files.

L. Close All Reports- to close all the opened reports.

M. Done – to finally close the window.

[image: image4.png]‘ode Analyzer for C - [Static Analyzer]

File Name

IohoM

A code written in C can be statically analyzed by following the

sequence from the menu bar as given below :

5.3.1.1.1 File Menu : provides options to

5.3.1.1.1.1 Open : Click Open from the File menu, to open an existing file.

1. Going through the required directories select the file.

2. The path of the file will be displayed on the screen.

5.3.1.1.1.2 Close: Click Close if the window needs to be closed.

5.3.1.1.1.3 Analyze : To analyze the opened file, click Analyze. On completion of the Analysis, a message box indicating the same will be displayed as shown below

[image: image29.png]Code Analyzer for C - [Function Information] [_[CIx]

) Fle View Graph Repot Window Hep

=l81x]

DeHl e 8=

| krose ew

|

Function Information
Serial Number | Function Name | Level | Called Function | Numbex Of Times Called
1 main 1 ada 1
2 main 1 sub 1
B main 1 a1 1
a main 1 aiv 1
s ada 2 _ 0
B sub 2 _ 0
7 a1 2 _ 0
B aiv 2 errox 1
s errox B _ 0

For Help, press F1

[NoM[

5.3.1.1.1.4. Define Quality Model :

· In a quality model, the key attributes of quality called quality factors are identified from the user’s perspective. Each of the models assumes that the quality factors are still at too high a level to be meaningful or to be measured directly. Hence, they are further decomposed into lower-level attributes called quality criteria. A further level of decomposition is required, in which the quality criteria are associated with a set of low-level, directly measurable attributes called quality metrics.

· Clicking at it, window will be displayed as

[image: image30.png]Slow Factor Clock Tick.

Show

 -- The user can do one of the following:

a) Create a new model.

b) Select/Modify an existing model to see its definition.

c) Delete an existing model.

 The procedure is given below for these options.

a) To create a new model:

· Type in the new model name in the combo box to be included in the list.

· Click on Create Model button.

· A Criterion can be defined for the model by clicking at the Add button.

 The dialog box appeared is as below

[image: image31.png]

· Enter the criteria name and the number of categories it is constituted of.

· Now to enter the formula:

· Any number in the formula has to be entered in the

 Area specified for it.

· Click on Add button. It will subsequently be displayed in the formula space.

· The metrics in the formula can be chosen from the combo box for metrics.

· Clicking the Add button should follow each choice.

· Incase the formula needs to be re-entered, click on Clear button to clear the space and repeat the procedure.

· Enter the category name in the respective area and correspondingly enter the minimum and maximum value it represents along with the weight coefficient associated with each category. (The wt. coeff. Values the importance of each category defining the final Quality report)

· After all the data entries are done click on OK button.

· The sum of all coefficients of formula should be equal to 100.In case if this is violated, a message box will appear as shown.

[image: image32.png]100

%0

80

70

60

50

40

30

20

100

%0

ACCEPTED

Fis(Page

TO_COMMENT

Close.

L 80

L 70

L 60

- 50

- 40

- 30

r 20

9 % 0f Component

· The criteria thus added will be listed in the criteria space and this procedure can be repeated for adding more criteria to the model.

Quality Model criteria (predefined)
Quality is

Specified in terms of factors.

Designed in terms of criteria.

Built with the help of programming rules.

Assessed by means of metrics.
 Software Metrics

A software metric is a measure of some aspect of a program, design, or algorithm. It can be systematically calculated. It can be used to make inferences about that program, design, or algorithm. We can infer the complexity of other programs from the calculated values of one program.

 Software Complexity

Static Analysis of the code is performed through automatic code inspection. For C, Complexity of the source code is given through

Architectural Complexity

Structural Complexity

Textual Complexity

 Architectural Complexity

It gives the complexity related to the call graph of the software.

Metrics associated with this are

Accessibility of component:

 Is the measure of the ease with which a component may be accessed.

Testability of a path:

 Is the indication of the ease with which a path may be tested.

No. Of call paths:
Are going from root to the final Component.

No. Of levels:

Maximum lengths of call paths.

No. Of edges:

Total number of calls paths.

Hierarchical Complexity:

Mean number of components Per level.

Structural Complexity

Structural Complexity gives the complexity related to control structure of a given code. Metrics associated with this are

Cyclomatic Complexity:

Is the maximum number of linearly independent circuits in a strongly connected graph. It is also a measure of the number of basic paths in a component.

Degree of nesting:

Is the total number of nesting of the control structure.

No. Of in-out points:

Is the number of entry and exit points in a given code.

Textual Complexity

It gives the complexity related to the text of the code. Metrics associated with this are

Program length:

 Is the total usage of all operands and operators in the program.

Program volume:

 Is the number of bits needed to code the program.

Programming effort:

Is the number of ‘elementary mental discriminations required to code the program.
Coding time:

Is the time to code a preconceived algorithm in the language used.

Each category of the criterion is represented by a column represents each category of the Criterion, which is proportional to the number of components that belong to the criterion. Ranks an object with respect to set of quality criteria defined in the model.

It presents

· criterion/metric associations.

· the metrics position with respect to the limit values.

· the category of the object is given for each criterion

· It indicates the percentage of components belonging to each category defined.

Ø

The corresponding report gives the percentage of categories in which the

components are distributed with respect to the selected criterion. It is shown as

b) To select a model:

· Click at the combo box to list all the models created.

· Select a model and click at the criteria text area. All the criteria defined for the model will be displayed.

· A criterion can be modified if needed. Select the criterion to be modified from the list and click the Modify button.

Criterion - READABILITY

Metric

Weight percentage

Cyclomatic complexity

25

Program length

25

No of max. Levels

25

Average size of statements

25

Diagnosis

Lower

Upper

ACCEPTED

75

100

COMMENT

50

74

INSPECT

0

49

Criterion - SELF_DESCRIPTIVENESS

Metric

Weight percentage

Comment frequency

100

Diagnosis

Lower

Upper

ACCEPTED

100

100

COMMENT

0

 99

Criterion - SIMPLICITY

Metric

Weight percentage

Cyclomatic complexity

40

No of instructions

40

Average size of statements

20

Diagnosis

Lower

Upper

ACCEPTED

100

100

COMMENT

80

99

INSPECT

40

79

TEST

20

39

SUBDIVIDE

0

19

Criterion - TESTABILITY

Metric

Weight percentage

Cyclomatic complexity

40

No of max. Levels

40

I/O nodes

20

Diagnosis

Lower

Upper

ACCEPTED

100

100

RESTRUCTURE

80

99

SUBDIVIDE

20

79

REWRITE

0

19

Criterion - OSDEPENDENCY

Metric

Weight percentage

No of spawn

100

Diagnosis

Lower

Upper

ACCEPTED

100

100

REVIEW

0

99

· The dialog box appears as

[image: image33.png]ACCEPTED(337%)
% TO_DOCUMENTIE?Z

Fis(Page Close

The required modifications can be done at the appropriate edit boxes.

· Any criterion can be added in the model as done while creating a new model.

· Similarly any criterion can be deleted too, by clicking the Delete button in the model definition window.

c) To delete a model:

· Select the model name to be deleted from the list.

· Click the Delete Model button.

· [image: image34.png]Code Analyzer for C - [Qu:
) Fle View Graph Repot Window Hep

Report]

[_[CIx]
=l81x]

DedPEEa|

&

| Rreoseer

Quality Graph Report

Components Categories Percentage
aiv

main ACCERTED 23

ada

a1

sub To_pocurEnT &7

¥

For Help, press F1

[NoM[

A message box will appear asking for confirmation.

 On clicking Yes the model name will be removed from the list along with its criteria.

5.3.1.1.1.5. Select Quality Model: Clicking at it, the dialog box appears as

[image: image35.png]Code Analyzer for C

ibution Report-

ELF_DESCRIPTION]

) Fle View Graph Repot Window Hep

[_[CIx]
=l81x]

DedPEEa|

&

| Rreoseer

Criteria Distribution Report

Criteria SELF_DESCRIPTION
Components Categories Percentage
aiv ACCERTED 17

ada

a1

sub To_cammnr 83

o

For Help press F1

[NoM[

· Click at the combo box to list all the models.

· Select one of them and click OK. The Quality Model related graphs and reports would be enabled in the respective menus.

5.3.2.1.1.4 Generate html report: After Analysis in order to obtain reports for documentation html report is being provided.

· Select various results revealed and select required results and click generate reports.

· Html report will be generated and stored in c:\heuristic report directory

5.3.2.1.1.5 Display html reports: Click the button and html report generated will be displayed on screen in html formay

5.3.2.1.1.6 Save html report: Click save html report button and immediately save as dialog will appear select destination drive and file name to store html report as user wishes
5.3.1.1.1.9 Print - In case a document has to be printed, select it and click at Print.

5.3.1.1.1.10 Print Preview – It displays the document on the screen as it would

 appear printed.

5.3.1.1.1.11. Print Setup – Click at Print Setup to select a printer and printer connection.

5.3.1.1.1.12 Exit – To finally end the application click Exit.

5.3.1.1.2. View Menu : The toolbar and the status bar can be enabled/disabled by checking/ unchecking the respective options in the View menu.

5.3.1.1.3. Graph Menu : provides options for the display of following graphs-

 5.3.1.1.3.1. Call Graph :
· The Call graph shows the way the components are called within a program.

· An example is considered here. It appears as shown below

[image: image36.png]‘ode Analyzer for C - [Event Table] [_[CIx]
. File Yiew Graph Beport Window Help =181 x|
Dl EeaEsa BErose|en
Toent TabTe |
Serial Number | Functionl Function2 ClockTick | Status
1 global main o Calling
2 mainG adacint,int) | 20710 Calling
a adacint,int) | mainO 20710 Returing
a mainG sub(int,int) | 20710 Calling
s subCint,int) |main0O 20710 Returing
3 mainG mal(int,int) | 20710 Calling
7 malcine,int) | maino 20710 Returing
s mainG diveint,int) | 20710 Calling
s diveint,int) | maino 20710 Returing
10 mainG global 20710 Returing
yof
For Help, press F1 [N

 5.3.1.1.3.2. Control Graph :
· The Control graph shows the flow of control to different sections of the code. The pseudo code also appears along with it.

· Clicking this option will display a dialog box as below

[image: image37.png]5

40

36

32

B
2
2
16
12
s
s
0

OIS o pag

Dm0 Supeieg

|

Qanszt

PP ISLY JO P

Ty 1o SuurEo

AR UVIY T U

g

i

I

40

36

32
28
24
2
I
I

Close.

oo |

it Fage]

· Select the function name from the combo box for which control graph has to be displayed. Click OK. Considering an example here, the graph will be appear as

[image: image38.png]

· It has to be taken care that each time the control graph is clicked, the previous window has to be closed.
 5.3.1.1.3.3. Kiviat Graph :

· This is a graphical representation of the behaviour of a component according to various parameters.

· Each axis represents a metric.

· The reference circles correspond to the values defined as norms.

· The polygon shows the values of the component.

When a component meets the requirements of the norms, its polygon is located inside the reference circles as shown in the graph.

· Clicking at the option, the dialog box appears as

 [image: image5.png]Kiviat Garph Setings
FuncionNane [3]

Frtors Mot Ve Mo i
" | [o o [j
" | [o o [
o o o [o
T [o o [
" | [o o [
" | [o [o [o
Store s Dtk

Careel

· Select the function name whose Kiviat graph has to be displayed

 and Click at Store As Default button. All the values will be displayed

 as

[image: image39.png]

· The required metrics can be checked/unchecked in the check boxes. The values too can be set in the respective boxes so that the graph appears accordingly. Now click OK. The graph is displayed as

[image: image40.png]ode Analyzer For C++

Stack Memory Table]
= Fle_InstumentedFile Graph Repart

Anslzer View Window

Help

[_[CIx]
=l81x]

DedPEEa|

ennEre[2N

Kl

Stack Memory Table
Serial Number | Status StaciLevel

1 Beginning_of main(°

2 Beginning_of Math::SetValue(int,int) 2a

B End_of Math::SetValue(int,int) 24

a Eeginning_of Math::Rdd() 2a

5 End_of Math::RddO 2a

B Beginning_of Math::Sub() 2a

7 End_of Math::SubO 2a

B Beginning_of Math: :Mul() 2a

B End_of Math: :tul () 2a

10 Beginning_of Math: :Div() 2a e
11 End_of Math::DivO 2a

12 End_of_main0 °

For Help press F1

[NOM

5.3.1.1.3.4. Criteria Graph:

· This is a graphical representation of the behaviour of a component in function of the quality criteria. A quality criterion is represented by a set of metrics.

· Clicking at this option, a dialog box appears to select the function whose criteria graph has to be displayed. After selecting the function, click OK. Considering an example here, the graph thus displayed is

as below

[image: image41.png]‘ode Analyzer For C++ - [Heap Memory Table] [_[CIx]

= Fle_InstumentedFile Graph Repart

Anslzer View Window

Help

=l81x]

DedPEEa|

ErnEeEe|

Kl

Heap Memory Table

Serial Number | Status HeapLevel
1 Beginning_of main(°

2 Beginning_of Math::SetValue(int,int) °

B End_of Math::SetValue(int,int) °

a Eeginning_of Math::Rdd() °

s End_of Math::RddO °

B Beginning_of Math::Sub() °

7 End_of Math::SubO °

B Beginning_of Math: :Mul() °

s End_of Math: :tul () °

10 Beginning_of Math: :Div() ° e
11 End_of Math::DivO °

12 End_of_main0 °

For Help press F1

[NOM

5.3.1.1.3.5. Criteria Distribution Chart :
· This chart represents the distribution of all components analyzed with respect to each criterion defined.

· Clicking this option will display a dialog box as shown below.

[image: image42.png]g B 4 & & 8§ 2 2 = - o
i Qurs g Ruuuidag
s s s |

e e |
s
s s |
e |

—
s
e |
s s s |
s s s |
s s s |
e
0 s |
S
s s s |

I E——

—

Close.

oo |

it Fage]

 Select the criteria from the combo box.

· Click OK and the resulting chart appears as shown below

[image: image43.png]Function Vs Accessability Chart

10 10
9 9
s s
7 7
6 6
O 5 Accesshity
4 4
3 3
2 2
1 1
o :- - | e | s | s | =,

Fis(Page Close

.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the Previous Page .

· Click at Close to close the graphical view.

5.3.1.1.3.6. Quality Graph:
· Clicking this option will display a graph as shown below

[image: image44.png]Function Vs Cyclomatic Number Chart

: -
- -
; ;
: :
- -
. .
- -
- -
: :
o I T,
£

Fis(Page Close

· This is a pie chart showing the percentage of categories in which the components appear.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

 5.3.1.1.4. Report Menu : provides options for the display of textual and graphical

 reports.

5.3.1.1.4.1. Textual : exhibits the reports in textual format.

5.3.1.1.4.1.1. Call Structure Metrics : has all the reports related to call structure of the analyzed code which are as given below :

5.3.1.1.4.1.1.1. Call Graph Metrics : Clicking on it will display a table containing

 the metrics name and its respective value as given below .

[image: image45.png]Function Vs Maximum Nesting Chart

: :
: :
: :
6 6
5 5 Masimumesting
, ,
: :
: :
, .
: | 11 0| b

Fis(Page Close

5.3.1.1.4.1.1.2. Call Matrix: Clicking on it will display the number of times each

 function in the analyzed code calls the other function. It appears as

 shown below .[image: image46.png]Function Vs Comment Frequency Chartfin %]

@ @
54 54
m m
@ a2
& 36
30 30y Comment_Frequenc
x 2
o 18
12 12
6 6
0 0

Fis(Page Close

5.3.1.1.4.1.1.3 Testability Table : Clicking on it will display a table of the path

 number, path and the testability of all the components as shown below.

[image: image47.png]Code Analyzer for C

A\ rtumenston congeres

5.3.1.1.4.1.1.4. Accessibility Table : exhibits a table containing the component and

[image: image48.png]Code Analyzer for [C[51x]
T Ele Edt View Window Hep SR
Dedf=elg =l iEros e8| =)

Minclude "header.h'"

lheader h;
[#tinclude<stdio.h>
l#tinclude<malloc.h>

[void error();
[void main)
i
lh.__BEventMonitor[*."main');
lh.__Memory("'main{"."B");
Ih.__SMemory['main(".(0).1."A");
inta,b;
lh.__SMemory['main(".sizeof(in.2."A");
if{a>b)
intr1r2.r3.04;
h.___SMemory['main(".sizeof(int) 4."A");

scanf(*%d9%d", 2a,&b);
r1=add[a,b);

subfa,b);

r3=mulfa,b);

ra=divia.b);

printf["%d %d %d %6d".r1.12.13.r4);

o Help, press F1

=
[N g

 its accessibility as shown below.

5.3.1.1.4.1.2. Control Structure Metrics : has all the reports related to control

 structure of the analyzed code which are as given below :

5.3.1.1.4.1.2.1. Cyclomatic Table : displays a table of components and its respective
 cyclomatic number as shown below.

[image: image49.png]Code Analyzer for C - [Event Trace Diagram]
=

D B Hrose

EVENT TRACE DIRGRAX

— callea

—— Returnea

5.3.1.1.4.1.2.2. Maximum Nesting Table : displays a table of components and its

[image: image50.png]Qupejopug

i Ouprpudap o

Guiyunaj

Eans To pog

Gupanqns Jo Rugay

UEROppE Jo pust

DEpe o Audeg

Duww 0 By

Close.

=
2

 respective maximum nesting as shown below .

5.3.1.1.4.1.3 Textual Metrics : exhibits a table with all the textual metrics like

 number of statements, comment frequency, program volume etc. for all the

 components as shown below.

[image: image51.png]‘ode Analyzer for

Stack Memory Table]

) Fle View Graph Fepot Anbzer Window Help

[_[CIx]
=l81x]

DeHl e 8=

Hreozeltwe

Kl

Stack Memory Table
Serial Number | Status StaciLevel
1 Beginning_of main(°

2 Beginning_of _add(int,int) | 24

B End_of_add(int, int) 24

a Beginning_of_sub(int,int) | 24

s End_of_sub(int, int) 24

B Beginning_of mul(int int) | 24

7 End_of_mul (int, int) 24

B Beginning_of div(int,int) | 24

s End_of_aiv(int, int) 24

10 End_of_main0 °

For Help press F1

Using the horizontal scroll bar, the user can view the complete table.

5.3.1.1.4.1.4 General : provides general information of the code.

5.3.1.1.4.1.4.1 Function Information : provides total information about the

 functions in the code. It displays a table of the name of the function, the level,

 the called function and the number of times called as shown below.

[image: image52.png]‘ode Analyzer for

[Heap Memory Table]

) Fle View Graph Fepot Anbzer Window Help

[_[CIx]
=l81x]

DeHl e 8=

Hreozeltwe

Kl

Heap Memory Table
Serial Number | Status HeapLevel
1 Beginning_of main(°

2 Beginning_of_add(int,int) |0

B End_of_add(int, int) °

a Beginning_of_sub(int,int) |0

s End_of_sub(int, int) °

B Beginning_of _mul(int,int) |0

7 End_of_mul (int, int) °

B Beginning_of_div(int,int) |0

s End_of_aiv(int, int) a

10 End_of_main0 a

For Help press F1

5.3.1.1.4.1.4.2 Variable Information : provides total information of all the variables used in the program. It displays a table which has the name of variable, the function it is used in, the return type of the function, the type of the variable, is initialized or not, the number of references and whether it is a pointer or not. The table is as shown below

[image: image53.png]

 Using the horizontal scroll bar, the user can view the complete table.

5.3.1.1.4.1.5. Quality Report : gives the textual report of the quality graph.

 Considering an example here, the report appears as shown below.

[image: image54.png]Code Analyzer For C++

‘ Analysis Competed

5.3.1.1.4.1.6. Criteria Distribution Report :
· Clicking on it will display a dialog box where the criteria name should be selected.

· After selecting click at it and the resulting report appears as shown below

[image: image55.png]Resut Name.

=

5.3.1.1.4.2.Graphical : exhibits the reports in graphical form.

 5.3.1.1.4.2.1. Accessibility : shows the graph of value of accessibility of each

 component in the analyzed code. An example is shown below.

[image: image56.png]Control Chart

[|

Earkbari]
bank. dsplaulint] |

Cance

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

 5.3.1.1.4.2.2. Cyclomatic number : shows the graph of value of maximum nesting of each component and the entire code. Considering an example, the graph is as

shown below

[image: image57.png]Kiviat Garph Setings

Select

R Vel M e
P Nuber O Closes g E—
P weeherodratss T F |
T e B o) o
P CopingBowenObeatae | |0
e B

StacdsDefout | 5ot Dt Miimum o s |

=

 .

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

 5.3.1.1.4.2.3. Maximum Nesting : shows the graph of value of maximum nesting of

 each component. Considering an example, the graph appears as

[image: image58.png]person

Fis(Page

fived

hank

Close.

19 DepttDirhertenc

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

 5.3.1.1.4.2.4. Comment Frequency : shows the graph of the value of comment frequency of each component. Considering an example , the graph appears as

[image: image59.png]person

savings

Fis(Page

fived

hank

Close.

1 CoubingBetueenbie

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

 5.3.1.1.4.3.Document Report:

 HTML Format: On clicking this, for all the textual reports, the

 documentation will be available in HTML format .The options appear as

 [image: image6.png]Reports For Static Analyzer

7 CallGraph Metics
7 Cal Matix

7 Testabity Report
W Accesshiiy Report
7 Cyclomatic Number
¥ Masinum Nesting
7 Testual Metis

¥ Function Iformation

WV Wariable rformatiors

GENERATE REPORT cLose

The required options can be checked/unchecked for the respective reports to be generated .The report will be available in the current working directory.

 5.3.1.1.5. Analyzer Menu : Click at this to close the static analyzer.

5.3.1.1.6. Window Menu : Clicking on it will allow the following options for the

 arrangement of Windows .

· New Window – will open a window, similar to one previously opened.
· Cascade - will cascade all the opened windows.
· Tile – will arrange all the opened windows in a tiled format.
· It also gives a list of all opened windows.
 5.3.1.1.7. Help : It provides a brief detail about the menu.

 5.3.1.2. C Dynamic Analyzer

 On clicking Dynamic Analyzer, the windows appear as shown below:

[image: image7.png]Dynamic Analyzer [z]x] ‘ode Analyzer for C - [Dynamic Analyzer] 8 [=] 3
rStepl—————————— Fie_InstumentedFile Graph Report Anslyzsr View Window Help =181
Selct il onstument DedyBeE=0 ERAE O
I
Sefctte | CedoNonfie| o
_I —I File Name
[stz
Instunent —
[Stp3

Instumented fle

e I

- Reports

Graphs

Reports

Resuls

Generale HTML Reporl

Display Himl Report

Save Him Report

Close AllReports| Done.

For Help, press F1 IRl

 The user can perform the following by clicking at the respective buttons.

 The explanation and the related procedure is as given in the menu details

 which follow.

 A.Browse – to select a file for analysis.

 B.Create New File – to key in a new code for analysis.

 C.Instrument– to instrument the selected file.

 D.Open- to open the instrumented file.

 E.Build- to compile the instrumented file.

 F.Run - to execute the instrumented file.

 G.Click for graphs – to show a list of graphs giving the dynamically

 analyzed results.

 H.Click for reports - to give the results in a report format.

 I.Open Previous results – to open the previously analyzed files.

 J.Save current results – to save the current results for future reference.

 K.Delete results - to delete any result from the previously analyzed files.

L.Done – to finally close the window.

[image: image8.png]‘ode Analyzer for

File Name

[ONOM

A code written in C can be dynamically analyzed by following the

 sequence from the menu bar as given below :

5.3.1.2.1. File Menu : provides options to

5.3.1.2.1.1 Open :

· Click Open from the File menu to open an existing file.

· Going through the required directories, select the file. The path

 of the file will be displayed on the screen.

5.3.1.2.1.2 Instrument :
· Click Instrument to instrument the selected file. The dialog

 box that appears is as below

 [image: image9.png]Anslyzer
{ ¥ Event Trace I~ Memoy.

)

· Check the options for event trace and memory for the respective

 analysis to be done. Event tracer gets the source code and put some

 monitors in the actual source code and executes it. Using the

 monitors it finds out the execution path of the given source code.

 Memory analyzer gets the source code and gives the utilization of

 stack and heap. Static memory utilizes the stacks and dynamic

 memory utilizes the heap.

· Click at Instrument button. After instrumentation of the file, a

 message box appears as

[image: image60.png]it Fage]

Close.

9 Cyclomatic_Nurbe

· Click on OK and then click on Close in the main dialog box.

5.3.1.2.1.3 Close : Click Close if the window needs to be closed.

 5.3.1.2.1.4Open Previous Results: The results of already instrumented and

 executed code can be saved and later retrieved. On clicking at this

 option dialog box appears as

[image: image61.png]Minclude "header.h'"
lheader h;
[#include<stdlib.h>
[#include<conio.h>
[#include<iostream.h>

class person

protected:
long int acc_no,age;
char acc_type,name[20].add1[20];
char add2[20).city[15].pin[8]:

char sex.occupation[20);
float salary;
public:
void GetCustDetails(;
void DispCustDetails(;
[void person::GetCustDetails(

i
lh.__BEventMonitor[*person”."person::GetCustDetails(');

__Memory['person::GetCustDetails{"
—_SMemory["person::GetCustDetails{"

;
0).1

cout << “Enter the Name
cin >> name;
cout << “Enter the Address1
cin >> add1;

For Help press F1

|

· Select the result name from the list in the combo box.

· Click OK. The path of the file will be displayed in the window

and the user can view the results of the (dynamically)analyzed file as usual.

5.3.1.2.1.5 Save current results: After the instrumentation and execution of the file, results can be saved for future reference. Clicking this option will

display a dialog box as

[image: image62.png]Building default target: Instcode - Win2 Debug
Deicting internediate files and sutput Files for project ‘Instoode - Win32 Debug

. Configuration: Instcode - Win32 Debug
CompiLing. ..

Insteode. cpp

f:\codeanalyzerico_completocode\cppanalyzer\testproat\instcode. cop(27D) : warnin
o Cuua:™ " conversion from “double’” Lo Float”pussible Toss'of dota
inking ..

Insteode.exe - 0 error(s), 1 warning(s)

 Type the name of the result in the combo box and click OK. This result

 will be available while opening the previous results. Please note that it is

 applicable only if the file is executed after instrumentation.

 5.3.1.2.1.6 Delete Results :
i. Select the result to be deleted from the combo box of Open Previous Results. Click OK.

ii. Click at Delete Results from the File menu. The result will no longer be available in the list.

 5.3.1.2.1.7 Print - In case a document has to be printed , select it and click at

 Print.

 5.3.1.2.1.8 Print Preview – It displays the document on the screen as it

 would appear printed.

 5.3.1.2.1.9 Print Setup – Click at Print Setup to select a printer and printer

 connection.

 5.3.1.2.1.10 Exit – To finally end the application click Exit.

5.3.1.2.2. Instrumented File Menu : provides the following to be done on the

 instrumented code.

5.3.1.2.2.1 Open: Click on Open to view the instrumented file. This code is

 the copy of the initial source code with the monitors which help to find out

 the dynamic behaviour of the source code. It appears as

[image: image63.png]Augieg

Qpomig: poxy Jo

Cpavys: paxy Jo Huging.

QsBupaus A j0pu

OsBupaos:: sdu s jo Huidng

(sRagaes:zsAus g0 pug

sauLAs::sHuLiLs Jo g

siug o Tpuy

QsBupaus:: s J0 s

()sBupas:: sdu s jopun

sRapawes::sAupas o Tuiag

Qssmus:isups Jo pu

siug o gy

QsBupaus A j0pu

OsBupaos:: sdu s jo Huidng

(sRagaes:zsAus g0 pug

sauLAs::sHuLiLs Jo g

siug o Tpuy

QsBupaus:: s J0 s

()sBupas:: sdu s jopun

sRapawes::sAupas o Tuiag

Qssmus:isups Jo pu

g0

Quper jo sy

Close.

oo |

&
=

 5.3.1.2.2.2 Build : Click on it so that the file is built. The window appears as

[image: image64.png]‘ode Analyzer for

[_[CIx]

© Fle View Graph Repot Window Help EET
DS EEg=all=rose(2y

fnds 21.000000 2 000000 195. 0000l
[rent_Operands 6.000000 2. 000000 3500000

T

For Help, press F1

 5.3.1.2.2.3 Run : Click on it to execute the file. The window appears as

[image: image65.png]Code Analyzer for C

‘ Analysis Competed

 where the required inputs have to be entered. Now the results are ready

 to be viewed.

 5.3.1.2.3. Graph Menu : provides options for the display of following graphs-

5.3.1.2.3.1 Event Trace Diagram : shows the execution path of the source

 code. The diagram appears as

[image: image66.png]Model Definition Dialog Box

~Model

ModelNeme [~]
Creste Model BEEEHE|

~Citeria

D)

HEAD)

L L

Close.

5.3.1.2.3.2 Event Replay diagram : shows the execution trace with actual time taken for the execution of the source code. The window appears as

[image: image67.png]Citeria Name.

Number of Categaries

Forma.

—

40" Cyclomalic_Number + 40" Mar_Level + 20" No 0 Clear

Number Metics
o [—
a0
Categores Mirimm Maimun o Wedhtlor
[pocerte] oo fio [ia
[fo_sTRUCTURE =] [0 i £

=

1

I

· Click on Show to display the time taken to execute each segment of the instrumented code.

· Click on Close if the display needs to be closed.

5.3.1.2.3.3 Stack Variation Chart : shows the utilization of static memory allocation. Clicking at it, the chart appears as

[image: image68.png]Code Analyzer for C

A\ sumotthe cofiins o Fomia s el 100

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

5.3.1.2.3.4 Heap Variation Chart: shows the utilization of dynamic memory

 allocation. The graph displayed is as shown below

[image: image69.png]Code Analyzer for C

No

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

5.3.1.2.4 Report Menu : provides options for the display of the following

 reports.

 5.3.1.2.4.1 Event Table : gives a textual report of the event trace diagram. It

 displays a table containing the function names, their

 status (calling/returning) and the time taken for it to do so.

 The table appears as

[image: image70.png]Ciieria Name:]
Number of Categaries i

~Formula
Clear
Number Metics
Add
ategories irimum asimum il
& e b Qusity Report

[= P o d
[= P o d

Cance

 5.3.1.2.4.2 Stack Memory Table : gives a report of the stack variation chart. It

 displays a table with each status of the instrumented code and its stack

 level.The table appears as

[image: image71.png]Model [x]

Cance

 5.3.1.2.4.3 Heap Memory Table : gives a textual report of the Heap variation

 chart. It displays a table with each status of the instrumented code and its

 heap level. The table appears as

[image: image72.png]Dedr=eg=guizroese 2N

For Help, press F1 — R

5.3.1.2.4.4. Document Report :

 HTML Format : On clicking this, for all the textual reports, the

 documentation will be available in HTML format .The options appear as

 [image: image10.png]Reports for Dynamic Analyzer

7 Event Trace Report
7 Stack Utization Rzpart

W Heap Uization Report

GENERATE REPORT cLose

The required options can be checked/unchecked for the respective reports to be generated .The report will be available in the current working directory.

 5.3.1.2.5. Analyzer Menu : Click at it to close the dynamic Analyzer

5.3.1.2.6. View Menu : The toolbar and the statusbar can be enabled/disabled by

 checking/ unchecking the respective options in the View menu.

5.3.1.2.7. Window Menu : Clicking on it will allow the following options for the arrangement of

 Windows .

· New Window – will open a window, similar to one previously opened.
· Cascade - will cascade all the opened windows.
· Tile – will arrange all the opened windows in a tiled format.
· It also gives a list of all opened windows.
5.3.1.2.8. Help : It provides a brief detail about the menu.

 5.3.2 Code Analyzer for C++

 After choosing the option as C++ Analyzer from HEURISTICS menu the

 window appear side by side as

 [image: image11.png]., Code Analyzer for G+

Dynaric Analyzer
Dore.

[image: image73.png]-ode Analyzer for C - [Control Graph-div] MEIE
 Ele View Graph Bepon Window Help TR

Dl b2R(E =68 [Erozei 2w

Control Graph of div(int, int)
[X] Comeonent Entry/Ewic [[] comtwol reak
@ Control megin P> Contol Ena
[[] seauence of statements

o

For Help, press F1 o

The menu bar has the following menu items whose purpose has been explained below :

A.File : provides the following options

a)New - Opens a text editor where the user can key in the code. The menu items provided here are:

 i) File – Further provides options for New, Open, Save, Close

 Print and Exit for the respective windows.

ii) Edit –Allows the code to be edited upon with options for

 Undo, Cut, Copy and Paste.

 iii) View –Has options for the Toolbar and Status bar to

 be displayed.

 iv) Window – Allows the windows that are opened to be

 Cascaded or Tiled. It also allows a new window to be

 opened.

 v) Help – Provides a brief detail about all the menus in the

 software.

b).Open – Opens an existing file. The respective directory has to be

 chosen for the file to be opened.

c).Print Setup - Selects a printer and printer connection for a document to be

 printed

d). Exit - Exits <<Your Appln>>.

e). A list of opened windows is also displayed

 B. View : Has options for the Toolbar and Status bar to be displayed.

 C .Analyzer : The user can select between Static Analyzer and Dynamic

 Analyzer from this menu item.

 The user can choose between Static Analyzer and Dynamic Analyzer from

 the dialog box too.

 D. Help : Gives a brief about all the menus in the software

 5.3.2.1. C++ Static Analyzer : On clicking Static Analyzer the windows

 appear side by side as

[image: image12.png]~Sten1
Select C++Fil o Analyze

e

[Step2
Anslyze Anslze
- Reports
Cick here for Graphs
Cick herefor Textual Feports
Clck hers for Graphical Report
Resuls

Generate Himl Report

Display Himl Report

Save Him Repor.

Close AllRepotts Done.

ode Analyzer For C+-+ - [Static Analyzer] [=[ofx]

) Fle View Graph Repot Analyzer

Window_Help

=l8]x]

DeElBeE =0

[EreleN

File Name

For Help, press F1

[[NV [/]

 The user can perform the following by clicking at the respective buttons.

 The explanation and the related procedure is as given in the menu details

 which follow.

1.Browse – to select a file for analysis.

2.Create New File – to key in a new code for analysis.

3.Analyze – to analyze the selected file.

4.Click for graphs – to show a list of graphs giving the analyzed results.

5.Click for textual reports - to give the results in textual format.

6.Click for graphical reports – to show the results in graphicaldisplay.

7.Open Previous results – to open the previously analyzed files.

8.Save current results – to save the current results for future reference.

9.Delete results - to delete any result from the previously analyzed files.

10.Done – to finally close the window.

[image: image13.png](3 Code Analyzer For C++ - [Static Analyzer]

File Name

[ONOM

A code written in C++ can be statically analyzed by following the

sequence from the menu bar as given below :

5.3.2.1.1.File : provides options to

5.3.2.1.1.1. Open : Click Open from the File menu, to open an existing

 file.Going through the required directories select the file. The path

 of the file will be displayed on the screen.

5.3.2.1.1.2. Close : Click close if the window needs to be closed.

 5.3.2.1.1.3. Analyze :To analyze the opened file, click Analyze. On

 completion of the Analysis, a message box indicating the same

 will be displayed as shown below

[image: image74.png]Kiviat Garph Setings

Function Name.

S vhe Hiiom Maimn
P [ydomati Number i i [i5 j
F [l i i [

[P [[[

¥ [NoOlmutupaFars 1 3 [

[=== [z Joz [

© [NoOiSatement i [&0 -
Stote s Defak

Cance

 5.3.2.1.1.4 Generate html report: After Analysis in order to obtain reports for documentation html report is being provided.

· Select various results revealed and select required results and click generate reports .

· Html report will be generated and stored in c:\heuristic report directory

5.3.2.1.1.7 Display html reports: Click the button and html report generated will be displayed on screen in html formay

5.3.2.1.1.8 Save html report: Click save html report button and immediately save as dialog will appear select destination drive and file name to store html report as user wishes
5.3.2.1.1.7 Print - In case a document has to be printed , select it and click at

 Print.

5.3.2.1.1.8 Print Preview – It displays the document on the screen as it would

 appear printed.

 5.3.2.1.1.9 Print Setup – Click at Print Setup to select a printer and printer

 connection.

 5.3.2.1.1.10 Exit – To finally end the application click Exit.

 5.3.2.1.2 View : The toolbar and the status bar can be enabled/disabled by

 checking/unchecking the respective options in the View menu.

5.3.2.1.3. Graph : provides options for the display of following graphs-

 5.3.2.1.3.1.Class Diagram : Click at Class Diagram to display a graph as below

 showing the relationship between the classes existing in that file.

[image: image75.png]Building default target: Instcode - Win2 Debug
Deicting internediate files and sutput Files for project ‘Instoode - Win32 Debug

Configuration: Instcode - Win32 Debug

Conpiling

Insteode. cpp
F:\codeanalyzer\ca_completecodeNcanalyzer\test_program\instcode.cpp(112) warni]
ng Ci101: ‘m’ : unreferenced local variabl
F:\codeanalyzerica_completecode\canalyzer\test_progran\instcode.cpp(20) : warni
C4700: local variable a’ used without having been initialized
F:\codeanalyzerica_completecode\canalyzer\test_progran\instcode.cpp(20) : warnin
o CAT00: Tocal varTable b used withouthaving been'nitialized
inking. ..

Insteode.exe - 0 error(s), 3 warning(s)

 5.3.2.1.3.2 Control Graph :

· Clicking this option will display a dialog box as below
[image: image76.png]

· Select the function name from the combo box for which control graph has to be displayed. Click OK. Considering an example here, the graph will be appear as

[image: image77.png]il HEURISTICS [Code Analyzer for C] - [Variable Information] MEIE
* Ele View Graph Bepon Window Help BT

D Eeg=alll=rose(2N

Variable Information

nction Name | Return Type | Variable Name | Variable Type |Is Initialized | No_Of Refex
Lin voia = int 0 2
Lin voia v int 1 2

| 5

 showing the flow of control to different sections of the code.The pseudo

 code also appears along with it.

 5.3.2.1.3.3 Kiviat Graph :

· Clicking at this option, the dialog box appears as

[image: image78.png]Code Analyzer for
) Fe Miew Graph

Repot_Window Help

[_[CIx]
=l81x]

DedPEEa|

Ghlilxroseen

No_0f_Statement,

Cyclomatic_Number

sIMPLICITY

[—

bo_of_tnput_output_

Comment_Frequency

SELF_DESCRIPTION

yelomatic_Number

Program Length

READABILITY 3
|

For Help, press F1

>
[NoM [

· The required metrics can be checked/unchecked in the check boxes. The values too can be set in the respective boxes so that the graph appears accordingly. Now click OK. The graph is displayed as

[image: image79.png]ode Analyzer for C - [Call Graph Met [_[CIx]
. File Yiew Graph Beport Window Help =181 x|
DS Eeg=all=rose[2N
Call Graph Metzics |
Serial Number |lMetrics Name value
1 Numbero£Components 3
2 Numberofbegrees a
a Numbex0fLevels a
a Numbex0fEages s
s Number0£CallPaths a
3 HierarchicalComplesity 2
7 StructuralComplesity 0.833333
s ProgramTestability o
s NumbexOfUnreachableComponents | 0
10 CriticalNode main

|
For Help, press F1 Y

 5.3.2.1.4 Report : provides options for the display of textual and graphical reports.

 5.3.2.1.4.1 Textual : exhibits the reports in textual format.

 5.3.2.1.4.1.1 Depth of Inheritance : displays a table which shows the class name

 and its depth of inheritance as below

[image: image80.png]Code Analyzer for [_[CIx]
 Ele View Graph Bepon Window Help TR

DS Eeg=all=rose[2N

Call Matwiz
Func_Name |main | add | sub | mul | div | exror

main 0 E T A T

ada 0 0 0 0 0 0

sub 0 0 0 0 0 0

a1 0 0 0 0 0 0

aiv 0 0 0 0 0 1

errox 0 0 0 0 0 0

]
For Help, press F1 —r—

5.3.2.1.4.1.2.Coupling between Objects : The table displays the class name and

 the Coupling between the objects is as shown below

[image: image81.png]Code Analyzer for [_[CIx]
 Ele View Graph Bepon Window Help TR

DS Eeg=all=rose[2N

Testability Table

Path Number |Path Testability
1 main/aaa/ 0.2

2 main/sub/ 0.2

B main/mal/ 0.2

a main/div/error/ | 0. 111111

]
For Help, press F1 —r—

5.3.2.1.4.1.3. Cyclomatic number : The table displays the components in the file and its cyclomatic number as shown below

[image: image82.png]Code Analyzer for C - [Cyclomatic Table] [_[CIx]
 Ele View Graph Bepon Window Help TR

DS Eeg=all=rose[2N

Cyclomatic Table

Serial Number | Component Cyclomatic_Number
1 main 2
2 ada 1
B sub 1
a a1 1
s aiv 2
B errox 1
_ Entire Program |3

Rl "
For Help, press F1 T

Using the vertical scroll bar, the user can view the complete table.

5.3.2.1.4.2.Graphical : exhibits the reports in graphical format.

5.3.2.1.4.2.1 [image: image83.png]Code Analyzer for

) Fle View Graph Repot Window Hep

[Maximum Nesting Table]

[_[CIx]
=l81x]

DedPEEa|

Ghlilxroseen

For Help, press F1

Masimm Nesting Table

Serial NWumber | Component |MaximumNesting
1 main 2
2 ada 1
B sub 1
a a1 1
s aiv 2
B errox 1

=
[NoM [

Depth of Inheritance : shows the depth of inheritance of each class as below

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

5.3.2.1.4.2.1.Coupling between Objects : shows the coupling between objects in

 the classes as below

[image: image84.png]Code Analyzer for C - [Textual Metiics Table] [_[CIx]
 Ele View Graph Bepon Window Help TR

DS Eeg=all=rose[2N

Textual Metrics Table

lators | No_of Distinct_Operands | No Of Operands | Estimated Program Le
B 21 23
2 a B
1 2 0
1 2 0
2 B 10
0 0 0
12 a2 as

For Help, press F1 Y

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

5.3.2.1.4.2.4. Cyclomatic Number: shows the component and its cyclomatic number as below

[image: image85.png]‘ode Analyzer For C+-

lass Diagram]

) Fle View Graph Repot Window Hep

[_[CIx]
=l81x]

DeHl B8 =0

= o[2R

For Help, press F1

[NOM

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

5.3.2.1.4.3. Document Report :

 HTML Format : On clicking this, for all the textual reports, the

 documentation will be available in HTML format .The options appear as

 [image: image14.png]Reports for Static Analyzer

7 Depth of Inetance:

7 Couping between Dbjects

I Ejeomate Niimbed

GENERATE REPORT cLose

The required options can be checked/unchecked for the respective reports to be generated .The report will be available in the current working directory.

5.3.2.1.5.Analyzer : Click at this to close the static analyzer window

5.3.2.1.6. Window : Clicking on it will allow the following options for the arrangement of Windows .
· Cascade - will cascade all the opened windows.
· Tile – will arrange all the opened windows in a tiled format.
· It also gives a list of all opened windows.
 5.3.2.1.7. Help : It provides a brief detail about the menu
5.3.2.2 C++ Dynamic Analyzer

 On clicking Dynamic Analyzer, the windows appear side by side as

[image: image15.png]‘ode Analyzer For C++ - [Dynamic Analyzer] [=[ofx]

Ele_InsiumentedFile_Graph Feport Andbzer View Window Help TR

[EreleN

Sten1

Select C+Filefor Instument DEEEEE =

I
Selectfile | Create NewFie| Clear File Name

ez
Instrument Inslrument
[Step3

Tstumented Fie

_Open | Buid Fun

- Reports

Clck here for Graphs

Cick here for Reparts

Resuls

Generate Himl Repor

Display Hirl Report

Save Him Report

Close AllReports| Done.

For Help, press F1 IRl

 The user can perform the following by clicking at the respective buttons.

 The explanation and the related procedure is as given in the menu details

 which follow.

 1. Browse – to select a file for analysis.

 2. Create New File – to key in a new code for analysis.

 3. Instrument– to instrument the selected file.

4. Open- to open the instrumented file.

5. Build- to compile the instrumented file.

6. Run - to execute the instrumented file.

 7. Click for graphs – to show a list of graphs giving the dynamically

 analyzed results.

 8. Click for reports - to give the results in a report format.

[image: image16.png]3 Code Analyzer For C++ - [Dynamic Analyzer]

File Name

[ONOM

A code written in C++ can be dynamically analyzed by following the

 sequence from the menu bar as given below :

5.3.2.2.1. File menu : provides options to

5.3.2.2.1.1 Open :

· Click Open from the File menu to open an existing file.

· Going through the required directories, select the file. The path

 of the file will be displayed on the screen.

5.3.2.2.1.2. Instrument :
· Click Instrument to instrument the selected file. The dialog

 box that appears is as below

 [image: image17.png]Anslyzer
{ ¥ Event Trace I~ Memoy.

)

· Check the options for event trace and memory for the respective analysis to be done.

· Click at Instrument button. After instrumentation of the file, a

 message box appears as

[image: image86.png][_[CIx]

Code Analyzer For Cs+

[Control Graph-bank

File View Graph Feport Window Help =181 x|
Dl Eea=a &7 O[2N
B comonent Ervexsm] comewon meed]

Control Begin P> contror sna

Sequence of Statements

E

Evno conm

For Help, press F1 1

· Click on OK and then click on Close in the main dialog box.

5.3.2.2.1.3.Close : Click Close if the window needs to be closed.

5.3.2.2.1.4Generate html report: After Analysis in order to obtain reports for documentation html report is being provided.

· Select various results revealed and select required results and click generate reports .

· Html report will be generated and stored in c:\heuristic report directory

5.3.2.2.1.5 Display html reports: Click the button and html report generated will be displayed on screen in html formay

5.3.2.2.1.6 Save html report: Click save html report button and immediately save as dialog will appear select destination drive and file name to store html report as user wishes
 Print.

5.3.2.2.1.8. Print Preview – It displays the document on the screen as it would

 appear printed.

5.3.2.2.1.9.Print Setup – Click at Print Setup to select a printer and printer

 connection.

 5.3.2.2.1.10.Exit – To finally end the application click Exit.

5.3.2.2.2 Instrumented File:provides the following to be done on the instrumented code.
5.3.2.2.2.1 Open: Click on Open to view the instrumented file. This code is the copy

 of the initial source code with the monitors which help to find out the

 dynamic behaviour of the source code. It appears as

[image: image87.png]Code Analyzer For Cs+

) Fle View Graph Repot Window Hep

[_[CIx]

DedPEEa|

L resR

[en 0f Inneritance
pling Between Objects
[omatic Number

1. 000000
2. 000000
7. 000000

1. 000000
1 000000
5. 000000

18] x]
5.000000 [4]
10.000000
15000000

o

For Help, press F1

[NOM

5.3.2.2.2.2 Build : Click on it so that the file is built. The window appears as

[image: image88.png]Code Analyzer For Cs+

) Fle View Graph Repot Window Hep

[Depth Of Inheritance Report]

[_[CIx]
=l81x]

DedPEEa|

L resR

For Help, press F1

Depth Of Inmheritance Report

Serial Number | ClassName | DepthOfInheritance
1 person 0
2 savings 1
B fixea 1
a bank 0

=
[NOM

5.3.2.2.2.3 Run :Click on it to execute the file. The window appears as window

 appears as

[image: image18.png]Enter Your Option
tecount Humber

ecount. Humber
hddress (line 1)
Rddress (line 2)
City

1 Master Entry
2 Transaction
3 Display

b Exit

Enter Vour Option

 where the required inputs have to be entered. Now the results are

 ready to be viewed.

5.3.2.2.3. Graph : provides options for the display of following graphs-

5.3.2.2.3.1 Event Trace Diagram : shows the execution path of the source code.

 The diagram appears as

[image: image89.png]Code Analyzer For Cs+

) Fle View Graph Repot Window Hep

g Between Obiects]

[_[CIx]
=l81x]

DedPEEa|

L resR

For Help, press F1

Coupling Between Objects

Serial Number | ClassName | CoublingBetweenObject
1 person 0
2 savings 1
B fixea 1
a bank 2

=
[NOM

5.3.2.2.3.2 Event Replay diagram : shows the execution trace with actual time taken

 by the execution of the source code. The window appears as

[image: image90.png]ode Analyzer For C++ - [Cyclomatic Number Table]

) Fle View Graph Repot Window Hep

[_[CIx]
=l81x]

DedPEEa|

| ErelzN

Cyclomatic Number Table

For Help,

Serial_Number | Compoment Cyclomatic Number
1 pereon: :GetCustetaile O 1
2 pereon: :DispCustDetails 1
s savings: : savings O 1
a avings: :GethcoDetails 1
s savings: :DispAccDetails() 1
B savings: :Deposit(floats 1
- avings: :Withdraw(float) 1
s savings: :SethcoNo (int) 1
B fixed: : fixedO 1
10 fixed: :SethccNo (int) 1
11 fixed: :GetAccDetails i
;o
= L]

· Click on Show to display the time taken to execute each segment of the instrumented code.

· Click on Close if the display needs to be closed.

5.3.2.2.3.3Stack Variation Chart :shows the utilization of static memory allocation.

 Clicking at it, the chart appears as

[image: image91.png][_[CIx]

Ele_InstumertedFile Graph Bepot View Window Help TR

DedEea=a BHro[?N

EVENT TRACI DIAGRAN

For Help, press F1 IR

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

5.3.2.2.3.4 Heap Variation Chart: shows the utilization of dynamic memory allocation.

 The graph displayed is as shown below

[image: image92.png]Fie_InstumentedFie Graph Repor

View Window Help

ode Analyzer For C++ - [Event Table] [_[CIx]

=l81x]

DedPEEa|

EInEeENe|

Event Table

For Help press F1

Function1 Function2 Clockric
global mainG °
mainG Math::SetValue(int int) | 1930
Math::SetValue(int,int) | mainO 1930
mainG Math::RdaO 1930
Math::RdaO mainG 1930
mainG Math::SubO 1930
Math::SubO mainG 1930
mainG Math: MUl O 1930
Math: MUl O mainG 1930
main Math: :DivO 1930

[NOM

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page .

· Click at Close to close the graphical view.

5.3.2.2.4 Report : provides options for the display of the following reports.

5.3.2.2.4.1 Event Table : gives a textual report of the event trace diagram. It

 displays a table containing the function names, their

 status (calling/returning) and the time taken for it to do so.

 The table appears as

Using the horizontal and the vertical scroll bars, the user can view the complete table.

5.3.2.2.4.2 Stack Memory Table : gives a report of the stack variation chart. It displays a table with each status of the instrumented code and its stack level.

The table appears as

Using the vertical scroll bar, the user can view the complete table.

5.3.2.2.4.3 Heap Memory Table: gives a textual report of the Heap variation chart. It displays a table with each status of the instrumented code and its heap level. The table appears as

 Using the vertical scroll bar, the user can view the complete table.

5.3.2.2.4.4 Document Report:

 HTML Format: On clicking this, for all the textual reports, the

 Documentation will be available in HTML format .The options appear as

 [image: image19.png]Reports for Dynamic Analyzer
7 Event Trace Report

¥ {Siack Utization eporé

I~ Heap Utizaion Repott

GENERATE REPORT cLose

5.3.2.2.5. Analyzer: Click at this to close the dynamic analyzer.

5.3.2.2.6 View: The toolbar and the statusbar can be enabled/disabled by checking/

 Unchecking the respective options in the View menu.

5.3.2.2.7 Window: Clicking on it will allow the following options for the arrangement

 Of Windows.

· Cascade - will cascade all the opened windows.
· Tile – will arrange all the opened windows in a tiled format.
· It also gives a list of all opened windows.
5.3.2.2.8. Help: It provides a brief detail about the menu.

Code Coverage

Code coverage tools measure how thoroughly tests exercise programs. Testers who read the source code while testing. It also describes coverage's relevance to the independent product tester (someone who doesn't look at the code) and to managers of developers and testers. For C Analyzer, we have implemented the following types of coverages.

Code coverage analysis is the process of:

· Finding areas of a program not exercised by a set of test cases,

· Creating additional test cases to increase coverage, and

· Determining a quantitative measure of code coverage, which is an indirect measure of quality.

An optional aspect of code coverage analysis is:

· Identifying redundant test cases that do not increase coverage.

Coverage Analysis – For C Analyzer

Statement Coverage

It is used to record which lines of code were executed. This type of coverage is usually called “statement coverage”. Statement coverage does not report whether loops reach their termination condition - only whether the loop body was executed.

One argument in favor of statement coverage over other measures is that faults are evenly distributed through code; therefore the percentage of executable statements covered reflects the percentage of faults discovered.

 Clicking at the Graph option, the Graph appears as

[image: image20.png]tatement Cover Graph

Statement Caover Graph

¢

Statamant CoveredB2%)
I Statament ot Coveradaa%)

Fist Page.

Close.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page.

· Click at Close to close the graphical view.

Function Coverage

This measure reports whether you invoked each function or procedure. It is useful during preliminary testing to assure at least some coverage in all areas of the software. Broad, shallow testing finds gross deficiencies in a test suite quickly. Here we have to find out that how many functions are covered for a sample project. Once we find out this, we can calculate the percentage of statements covered.

 Clicking at the Graph option, the Graph appears as

[image: image21.png]Function Cover Graph

Funcion Coversd0%)
I Functon Not Coversa50%)

Fist Page.

Close.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page.

· Click at Close to close the graphical view.

Call Coverage

This measure reports whether you executed each function call. The hypothesis is that faults commonly occur in interfaces between modules.

 Clicking at the Graph option, the Graph appears as

[image: image22.png]Call Cover Graph

Call Cover Graph

Call Coversa50%)
0l ot Coveress0s)

Fist Page. Close.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page.

· Click at Close to close the graphical view.

Decision Coverage

This measure reports whether Boolean expressions tested in control structures (such as the if-statement and while-statement) evaluated to both true and false. The entire Boolean expression is considered one true-or-false predicate regardless of whether it contains logical-and or logical-or operators. Additionally, this measure includes coverage of switch-statement cases, exception handlers, and interrupts handlers.

Exhibits a table with all the textual metrics like no. Of decision statements in each program, no. Of decision statements executed in each function as shown below. -

 Clicking at the Graph option, the Graph appears as

[image: image23.png]Decision Cover Graph

Decision Cover Graph

¢

Dacison Coveredsat)
0 Dacison Not Coversdaa%)

Close.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page.

· Click at Close to close the graphical view.

Data Coverage

This variation of path coverage considers only the sub-paths from variable assignments to subsequent references of the variables.

The advantage of this measure is the paths reported have direct relevance to the way the program handles data. One disadvantage is that this measure does not include decision coverage. Another disadvantage is complexity. Researchers have proposed numerous variations, all of which increase the complexity of this measure. For example, variations distinguish between the use of a variable in a computation versus a use in a decision, and between local and global variables. As with data flow analysis for code optimization, pointers also present problems.

 Clicking at the Graph option, the Graph appears as

[image: image24.png]Data Cover Graph

Data Covardr5%)
0 Data Nt Coveredzs)

Fist Page. Close.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page.

· Click at Close to close the graphical view.

Coverage Analysis – For Cpp Analyzer

Function Coverage

This measure reports whether you invoked each function or procedure. It is useful during preliminary testing to assure at least some coverage in all areas of the software. Broad, shallow testing finds gross deficiencies in a test suite quickly.

 Clicking at the Graph option, the Graph appears as

[image: image25.png]Function Cover Graph

Funcion Coversd0%)
I Functon Not Coversa50%)

Fist Page.

Close.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page.

· Click at Close to close the graphical view.

Statement Coverage: -

A simple one is to record which lines of code were executed. If a line has never been executed, it's a safe bet you didn't catch any bugs lurking in it. This type of coverage is usually called “statement coverage”.

This measure reports whether each executable statement is encountered. Statement coverage does not report whether loops reach their termination condition - only whether the loop body was executed.

 Clicking at the Graph option, the Graph appears as

[image: image26.png]tatement Cover Graph

Statement Caover Graph

¢

Statamant CoveredB2%)
I Statament ot Coveradaa%)

Fist Page.

Close.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page.

· Click at Close to close the graphical view.

Decision Coverage

This measure reports whether Boolean expressions tested in control structures (such as the if-statement and while-statement) evaluated to both true and false. The entire Boolean expression is considered one true-or-false predicate regardless of whether it contains logical-and or logical-or operators. Additionally, this measure includes coverage of switch-statement cases, exception handlers, and interrupts handlers.

 Clicking at the Graph option, the Graph appears as

[image: image27.png]Decision Cover Graph

Decision Cover Graph

¢

Dacison Coveredsat)
0 Dacison Not Coversdaa%)

Close.

· If the graph appears in the following page too, click on Next Page to view the same. One can get back to the previous page by clicking at the

Previous Page.

· Click at Close to close the graphical view.

Inheritance Coverage: -

Inheritance context coverage is not a single metric, but rather a way of extending the Interpretation of (any of) the traditional structural coverage metrics to take into

Account the additional interactions, which occur when methods are inherited.

Inheritance context coverage provides alternative metric definitions, which consider

The levels of coverage achieved in the context of each class as separate measurements.

The inheritance context definitions regard execution of the routine in the context of
the base class as separate from execution of the routine in the context of a derived

class.
Clicking at the Graph option, the Graph appears as

[image: image28.png]heritance Cover Graph

Inheritance Cover Graph

1 nbertance Coveredl0%]
rhertance Not Coverec100

FislPage Nest Page Close

6.Notes

 Not applicable

PAGE
 Newtech Software, Bangalore
59
Feb, 2004

_1138027196

_1184836599

_1184836679

_1188805621

_1188730538

_1184836639

_1184836545

_1184836452

_1138026110

_1138027011

_1138026020

